与传统的机器人手不同,由于固有的不确定性,兼容的手不足的手对模型的挑战。因此,通常基于视觉感知执行抓握对象的姿势估计。但是,在闭塞或部分占地环境中,对手和物体的视觉感知可以受到限制。在本文中,我们旨在探索触觉的使用,即动力学和触觉感测,以构成姿势估计和手动操纵,手工不足。这种触觉方法会减轻并非总是可用的视线。我们强调识别系统的特征状态表示,该状态表示不包括视觉,可以通过简单和低成本的硬件获得。因此,对于触觉传感,我们提出了一个低成本和灵活的传感器,该传感器主要是与指尖一起打印的3D,并可以提供隐式的接触信息。我们将双手手动的手作为测试案例不足,我们分析了动力学和触觉特征以及各种回归模型对预测准确性的贡献。此外,我们提出了一种模型预测控制(MPC)方法,该方法利用姿势估计将对象操纵为仅基于触觉的所需状态。我们进行了一系列实验,以验证具有不同几何形状,刚度和纹理的各种物体的姿势的能力,并以相对较高的精度显示工作空间中的目标。
translated by 谷歌翻译
在执行各种任务时,对象识别是必不可少的功能。人类自然使用视觉和触觉感知来提取对象类和属性。但是,机器人的典型方法需要复杂的视觉系统或多个高密度触觉传感器,这可能非常昂贵。此外,它们通常需要通过直接交互从真实对象中实际收集大型数据集。在本文中,我们提出了一种基于动力学的对象识别方法,该方法可以用任何多指的机器人手来执行,其中运动学是已知的。该方法不需要触觉传感器,并且基于观察对象的掌握。我们利用grasps的独特和框​​架不变的参数化来学习对象形状的实例。为了培训分类器,培训数据是在计算过程中快速而仅生成的,而无需与真实对象相互作用。然后,我们提出和比较可以集成任何受过训练的分类器的两种迭代算法之间。分类器和算法独立于任何特定的机器人手,因此可以在各种机器人手上施加。我们在实验中表明,算法很少有GRASP获得准确的分类。此外,我们表明对象识别方法可扩展到各种大小的对象。同样,对全局分类器进行了训练,可以识别一般几何形状(例如,椭圆形或盒子),而不是特定的几何形状,并在大型对象上进行了证明。提供了完整的实验和分析以显示该方法的性能。
translated by 谷歌翻译